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  The elements  

 Name  Symbol  Atomic number  Molar mass 
(g mol −1 ) 

 Actinium  Ac  89  227 
 Aluminium (aluminum)  Al  13  26.98 
 Americium  Am  95  243 
 Antimony  Sb  51  121.76 
 Argon  Ar  18  39.95 
 Arsenic  As  33  74.92 
 Astatine  At  85  210 
 Barium  Ba  56  137.33 
 Berkelium  Bk  97  247 
 Beryllium  Be  4  9.01 
 Bismuth  Bi  83  208.98 
 Bohrium  Bh  107  264 
 Boron  B  5  10.81 
 Bromine  Br  35  79.90 
 Cadmium  Cd  48  112.41 
 Caesium (cesium)  Cs  55  132.91 
 Calcium  Ca  20  40.08 
 Californium  Cf  98  251 
 Carbon  C  6  12.01 
 Cerium  Ce  58  140.12 
 Chlorine  Cl  17  35.45 
 Chromium  Cr  24  52.00 
 Cobalt  Co  27  58.93 
 Copernicum  Cp  112  277 
 Copper  Cu  29  63.55 
 Curium  Cm  96  247 
 Darmstadtium  Ds  110  271 
 Dubnium  Db  105  262 
 Dysprosium  Dy  66  162.50 
 Einsteinium  Es  99  252 
 Erbium  Er  68  167.27 
 Europium  Eu  63  151.96 
 Fermium  Fm  100  257 
 Flerovium  Fl  114  289 
 Fluorine  F  9  19.00 
 Francium  Fr  87  223 
 Gadolinium  Gd  64  157.25 
 Gallium  Ga  31  69.72 
 Germanium  Ge  32  72.64 
 Gold  Au  79  196.97 
 Hafnium  Hf  72  178.49 
 Hassium  Hs  108  269 
 Helium  He  2  4.00 
 Holmium  Ho  67  164.93 
 Hydrogen  H  1  1.008 
 Indium  In  49  114.82 
 Iodine  I  53  126.90 
 Iridium  Ir  77  192.22 
 Iron  Fe  26  55.84 
 Krypton  Kr  36  83.80 
 Lanthanum  La  57  138.91 
 Lawrencium  Lr  103  262 
 Lead  Pb  82  207.2 
 Lithium  Li  3  6.94 
 Livermorium  Lv  116  293 
 Lutetium  Lu  71  174.97 
 Magnesium  Mg  12  24.31 

Name Symbol Atomic number Molar mass 
(g mol−1)

 Manganese  Mn  25  54.94 
 Meitnerium  Mt  109  268 
 Mendelevium  Md  101  258 
 Mercury  Hg  80  200.59 
 Molybdenun  Mo  42  95.94 
 Neodymium  Nd  60  144.24 
 Neon  Ne  10  20.18 
 Neptunium  Np  93  237 
 Nickel  Ni  28  58.69 
 Niobium  Nb  41  92.91 
 Nitrogen  N  7  14.01 
 Nobelium  No  102  259 
 Osmium  Os  76  190.23 
 Oxygen  O  8  16.00 
 Palladium  Pd  46  106.42 
 Phosphorus  P  15  30.97 
 Platinum  Pt  78  195.08 
 Plutonium  Pu  94  244 
 Polonium  Po  84  209 
 Potassium  K  19  39.10 
 Praseodymium  Pr  59  140.91 
 Promethium  Pm  61  145 
 Protactinium  Pa  91  231.04 
 Radium  Ra  88  226 
 Radon  Rn  86  222 
 Rhenium  Re  75  186.21 
 Rhodium  Rh  45  102.91 
 Roentgenium  Rg  111  272 
 Rubidium  Rb  37  85.47 
 Ruthenium  Ru  44  101.07 
 Rutherfordium  Rf  104  261 
 Samarium  Sm  62  150.36 
 Scandium  Sc  21  44.96 
 Seaborgium  Sg  106  266 
 Selenium  Se  34  78.96 
 Silicon  Si  14  28.09 
 Silver  Ag  47  107.87 
 Sodium  Na  11  22.99 
 Strontium  Sr  38  87.62 
 Sulfur  S  16  32.06 
 Tantalum  Ta  73  180.95 
 Technetium  Tc  43  98 
 Tellurium  Te  52  127.60 
 Terbium  Tb  65  158.93 
 Thallium  TI  81  204.38 
 Thorium  Th  90  232.04 
 Thulium  Tm  69  168.93 
 Tin  Sn  50  118.71 
 Titanium  Ti  22  47.87 
 Tungsten  W  74  183.84 
 Uranium  U  92  238.03 
 Vanadium  V  23  50.94 
 Xenon  Xe  54  131.29 
 Ytterbium  Yb  70  173.04 
 Yttrium  Y  39  88.91 
 Zinc  Zn  30  65.41 
 Zirconium  Zr  40  91.22 
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       Preface   

  Our aim in the sixth edition of  Inorganic Chemistry  is to provide a comprehensive and 
contemporary introduction to the diverse and fascinating subject of inorganic chemistry. 
Inorganic chemistry deals with the properties of all of the elements in the periodic table. 
These elements range from highly reactive metals, such as sodium, to noble metals, such 
as gold. The nonmetals include solids, liquids, and gases, and range from the aggressive 
oxidizing agent fl uorine to unreactive gases such as helium. Although this variety and 
diversity are features of any study of inorganic chemistry, there are underlying patterns 
and trends which enrich and enhance our understanding of the discipline. These trends 
in reactivity, structure, and properties of the elements and their compounds provide an 
insight into the landscape of the periodic table and provide a foundation on which to build 
a detailed understanding. 

 Inorganic compounds vary from ionic solids, which can be described by simple applica-
tions of classical electrostatics, to covalent compounds and metals, which are best described 
by models that have their origin in quantum mechanics. We can rationalize and interpret 
the properties and reaction chemistries of most inorganic compounds by using qualitative 
models that are based on quantum mechanics, such as atomic orbitals and their use to 
form molecular orbitals. Although models of bonding and reactivity clarify and systema-
tize the subject, inorganic chemistry is essentially an experimental subject. New inorganic 
compounds are constantly being synthesized and characterized through research projects 
especially at the frontiers of the subject, for example, organometallic chemistry, materials 
chemistry, nanochemistry, and bioinorganic chemistry. The products of this research into 
inorganic chemistry continue to enrich the fi eld with compounds that give us new perspec-
tives on structure, bonding, reactivity, and properties. 

 Inorganic chemistry has considerable impact on our everyday lives and on other sci-
entifi c disciplines. The chemical industry is strongly dependent on it. Inorganic chemistry 
is essential to the formulation and improvement of modern materials such as catalysts, 
semiconductors, optical devices, energy generation and storage, superconductors, and 
advanced ceramics. The environmental and biological impacts of inorganic chemistry are 
also huge. Current topics in industrial, biological, and sustainable chemistry are men-
tioned throughout the book and are developed more thoroughly in later chapters. 

 In this new edition we have refi ned the presentation, organization, and visual repre-
sentation. All of the book has been revised, much has been rewritten, and there is some 
completely new material. We have written with the student in mind, including some new 
pedagogical features and enhancing others. 

 The topics in Part 1,  Foundations , have been updated to make them more accessible to 
the reader with more qualitative explanation accompanying the more mathematical treat-
ments. Some chapters and sections have been expanded to provide greater coverage, par-
ticularly where the fundamental topic underpins later discussion of sustainable chemistry. 

 Part 2,  The elements and their compounds , has been substantially strengthened. The 
section starts with an enlarged chapter which draws together periodic trends and cross 
references forward to the descriptive chapters. An enhanced chapter on hydrogen, with 
reference to the emerging importance of the hydrogen economy, is followed by a series 
of chapters traversing the periodic table from the s-block metals through the p block to 
the Group 18 gases. Each of these chapters is organized into two sections:  The essentials  
describes the fundamental chemistry of the elements and  The detail  provides a more thor-
ough, in-depth account. This is followed by a series of chapters discussing the fascinating 
chemistry of the d - block and, fi nally, the f-block elements. The descriptions of the chemical 
properties of each group of elements and their compounds are enriched with illustrations 
of current research and applications. The patterns and trends that emerge are rationalized 
by drawing on the principles introduced in Part 1. 

 Part 3,  Frontiers , takes the reader to the edge of knowledge in several areas of current 
research. These chapters explore specialized subjects that are of importance to industry, 
materials science, and biology, and include catalysis, solid state chemistry, nanomaterials, 
metalloenzymes, and inorganic compounds used in medicine. 
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vi Preface

 We are confi dent that this text will serve the undergraduate chemist well. It provides the 
theoretical building blocks with which to build knowledge and understanding of inorganic 
chemistry. It should help to rationalize the sometimes bewildering diversity of descriptive 
chemistry. It also takes the student to the forefront of the discipline with frequent discus-
sion of the latest research in inorganic chemistry and should therefore complement many 
courses taken in the later stages of a program. 
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     About the book   

   Inorganic Chemistry  provides numerous learning features to help you master this wide-
ranging subject. In addition, the text has been designed so that you can either work 
through the chapters chronologically, or dip in at an appropriate point in your studies. 
The text’s Book Companion Site provides further electronic resources to support you in 
your learning. 

 The material in this book has been logically and systematically laid out, in three dis-
tinct sections. Part 1,  Foundations,  outlines the underlying principles of inorganic chem-
istry, which are built on in the subsequent two sections. Part 2,  The elements and their 
compounds,  divides the descriptive chemistry into ‘essentials’ and ‘detail’, enabling you to 
easily draw out the key principles behind the reactions, before exploring them in greater 
depth. Part 3,  Frontiers,  introduces you to exciting interdisciplinary research at the fore-
front of inorganic chemistry. 

 The paragraphs below describe the learning features of the text and Book Companion 
Site in further detail. 

    Organizing the information   

    Key points    
 The key points outline the main take-home message(s) of the 
section that follows. These will help you to focus on the prin-
cipal ideas being introduced in the text. 

     Context boxes   
 Context boxes demonstrate the diversity of inorganic chem-
istry and its wide-ranging applications to, for example, 
advanced materials, industrial processes, environmental 
chemistry, and everyday life.  

     Further reading   
 Each chapter lists sources where further information can be 
found. We have tried to ensure that these sources are easily 
available and have indicated the type of information each one 
provides.  

     Resource section   
 At the back of the book is a comprehensive collection of 
resources, including an extensive data section and informa-
tion relating to group theory and spectroscopy.     

 Notes on good practice    
 In some areas of inorganic chemistry the nomenclature com-
monly in use today can be confusing or archaic—to address 
this we have included short “notes on good practice” that 
make such issues clearer for the student.  
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ixAbout the book

      Problem solving   

    Brief illustrations   
 A  Brief illustration  shows you how to use equations or con-
cepts that have just been introduced in the main text, and will 
help you to understand how to manipulate data correctly.  

     Worked examples and Self-tests   
 Numerous worked  Examples  provide a more detailed illustra-
tion of the application of the material being discussed. Each 
one demonstrates an important aspect of the topic under dis-
cussion or provides practice with calculations and problems. 
Each  Example  is followed by a  Self-test  designed to help you 
monitor your progress.  

     Exercises   
 There are many brief  Exercises  at the end of each chapter. You 
can fi nd the answers on the Book Companion Site and fully 
worked solutions are available in the separate  Solutions man-
ual . The  Exercises  can be used to check your understanding and 
gain experience and practice in tasks such as balancing equa-
tions, predicting and drawing structures, and manipulating 
data . 

      Tutorial Problems   
 The  Tutorial Problems  are more demanding in content and 
style than the  Exercises  and are often based on a research paper 
or other additional source of information. Problem questions 
generally require a discursive response and there may not be 
a single correct answer. They may be used as essay type ques-
tions or for classroom discussion.  

     Solutions Manual   
 A Solutions Manual (ISBN: 1-4641-2438-8 ) by Alen Hadzovic 
is available to accompany the text and provides complete solu-
tions to the self-tests and end-of-chapter exercises. 

  

  

  

  

2523_WHF_FM.indd   ix2523_WHF_FM.indd   ix 10/4/2013   2:33:41 PM10/4/2013   2:33:41 PM



      Book Companion Site   

 The Book Companion Site to accompany this book provides a number of useful teaching 
and learning resources to augment the printed book, and is free of charge. 

 The site can be accessed at:  www.whfreeman.com/ichem6e  

 Please note that instructor resources are available only to registered adopters of the text-
book. To register, simply visit  www.whfreeman.com/ichem6e  and follow the appropriate 
links. 

 Student resources are openly available to all, without registration.  

    Materials on the Book Companion Site include:   

    3D rotatable molecular structures   
  Numbered structures  can be found online as interactive 3D struc-
tures. Type the following URL into your browser, adding the rel-
evant structure number:  www.chemtube3d.com/weller/ [chapter 
number]S[structure number]. For example, for structure 10 in 
Chapter 1, type  www.chemtube3d.com/weller/1S10 . 

 Those  fi gures  with an asterisk (*) in the caption can also be 
found online as interactive 3D structures. Type the following 
URL into your browser, adding the relevant fi gure number:  www.
chemtube3d.com/weller/ [chapter number]F[fi gure number]. For 
example, for Figure 4 in chapter 7, type  www.chemtube3d.com/
weller/7F04 . 

 Visit  www.chemtube3d.com/weller/ [chapter number] for all 3D 
resources organized by chapter.  

      Answers to Self-tests and Exercises   
 There are many  Self-tests  throughout each chapter and brief 
 Exercises  at the end of each chapter. You can fi nd the answers on 
the Book Companion Site. 

    Videos of chemical reactions   
 Video clips showing demonstrations of a variety of inorganic chemistry reactions are avail-
able for certain chapters of the book.  

    Molecular modeling problems   
 Molecular modeling problems are available for almost every chapter, and are written to 
be performed using the popular  Spartan Student  TM  software. However, they can also be 
completed using any electronic structure program that allows Hartree–Fock, density func-
tional, and MP2 calculations.  

    Group theory tables   
 Comprehensive group theory tables are available to download.  
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xiBook Companion Site

   For registered adopters:   

    Figures and tables from the book   
 Instructors can fi nd the artwork and tables from the book online in ready-to-download 
format. These can be used for lectures without charge (but not for commercial purposes 
without specifi c permission).    
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        Glossary of chemical abbreviations   

       Ac    acetyl, CH 3 CO  

   acac    acetylacetonato  

   aq    aqueous solution species  

   bpy    2,2′-bipyridine  

   cod    1,5-cyclooctadiene  

   cot    cyclooctatetraene  

   Cy    cyclohexyl  

   Cp    cyclopentadienyl  

   Cp*    pentamethylcyclopentadienyl  

   cyclam    tetraazacyclotetradecane  

   dien    diethylenetriamine  

   DMSO    dimethylsulfoxide  

   DMF    dimethylformamide  

   η    hapticity  

   edta    ethylenediaminetetraacetato  

   en    ethylenediamine (1,2-diaminoethane)  

   Et    ethyl  

   gly    glycinato  

   Hal    halide  

    i Pr    isopropyl  

   L    a ligand  

   μ    signifi es a bridging ligand  

   M    a metal  

   Me    methyl  

   mes    mesityl, 2,4,6-trimethylphenyl  

   Ox    an oxidized species  

   ox    oxalato  

   Ph    phenyl  

   phen    phenanthroline  

   py    pyridine  

   Red    a reduced species  

   Sol    solvent, or a solvent molecule  

   soln    nonaqueous solution species  

    t Bu    tertiary butyl  

   THF    tetrahydrofuran  

   TMEDA     N ,  N ,N′, N ′-tetramethylethylenediamine  

   trien    2,2′,2″-triaminotriethylene  

   X    generally halogen, also a leaving group or an anion  

   Y    an entering group               
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    PART 1 
Foundations      

  The eight chapters in this part of the book lay the foundations of inorganic chemistry. The fi rst 
three chapters develop an understanding of the structures of atoms, molecules, and solids. 
Chapter 1 introduces the structure of atoms in terms of quantum theory and describes important 
periodic trends in their properties. Chapter 2 develops molecular structure in terms of increasingly 
sophisticated models of covalent bonding. Chapter 3 describes ionic bonding, the structures and 
properties of a range of typical solids, the role of defects in materials, and the electronic proper-
ties of solids. The next two chapters focus on two major types of reactions. Chapter 4 explains 
how acid–base properties are defi ned, measured, and applied across a wide area of chemistry. 
Chapter 5 describes oxidation and reduction, and demonstrates how electrochemical data can be 
used to predict and explain the outcomes of reactions in which electrons are transferred between 
molecules. Chapter 6 shows how a systematic consideration of the symmetry of molecules can 
be used to discuss the bonding and structure of molecules and help interpret data from some 
of the techniques described in Chapter 8. Chapter 7 describes the coordination compounds of 
the elements. We discuss bonding, structure, and reactions of complexes, and see how symmetry 
considerations can provide useful insight into this important class of compounds. Chapter 8 pro-
vides a toolbox for inorganic chemistry: it describes a wide range of the instrumental techniques 
that are used to identify and determine the structures and compositions of inorganic compounds. 
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The structures of hydrogenic atoms

 1.1 Spectroscopic information

 1.2 Some principles of quantum 
mechanics

 1.3 Atomic orbitals

Many-electron atoms

 1.4 Penetration and shielding

 1.5 The building-up principle

 1.6 The classifi cation of the elements

 1.7 Atomic properties

Further reading

Exercises

Tutorial problems

   This chapter lays the foundations for the explanation of the trends in the physical and chemical 
properties of all inorganic compounds. To understand the behaviour of molecules and solids we 
need to understand atoms: our study of inorganic chemistry must therefore begin with a review 
of their structures and properties. We start with a discussion of the origin of matter in the solar 
system and then consider the development of our understanding of atomic structure and the 
behaviour of electrons in atoms. We introduce quantum theory qualitatively and use the results to 
rationalize properties such as atomic radii, ionization energy, electron affi nity, and electronegativ-
ity. An understanding of these properties allows us to begin to rationalize the diverse chemical 
properties of the more than 110 elements known today. 

 The observation that the universe is expanding has led to the current view that about 14 
billion years ago the currently visible universe was concentrated into a point-like region 
that exploded in an event called the  Big Bang . With initial temperatures immediately after 
the Big Bang of about 10 9  K, the fundamental particles produced in the explosion had 
too much kinetic energy to bind together in the forms we know today. However, the 
universe cooled as it expanded, the particles moved more slowly, and they soon began to 
adhere together under the infl uence of a variety of forces. In particular, the  strong force , a 
short-range but powerful attractive force between nucleons (protons and neutrons), bound 
these particles together into nuclei. As the temperature fell still further, the  electromagnetic 
force , a relatively weak but long-range force between electric charges, bound electrons to 
nuclei to form atoms, and the universe acquired the potential for complex chemistry and 
the existence of life ( Box  1.1  ).  

 About two hours after the start of the universe, the temperature had fallen so much 
that most of the matter was in the form of H atoms (89 per cent) and He atoms (11 per 
cent). In one sense, not much has happened since then for, as  Fig.  1.1   shows, hydrogen 
and helium remain overwhelmingly the most abundant elements in the universe. However, 
nuclear reactions have formed a wide assortment of other elements and have immeasur-
ably enriched the variety of matter in the universe, and thus given rise to the whole area of 
chemistry ( Boxes  1.2   and   1.3  ).     

  Table  1.1   summarizes the properties of the subatomic particles that we need to con-
sider in chemistry. All the known elements—by 2012, 114, 116, and 118 had been con-
fi rmed, although not 115 or 117, and several more are candidates for confi rmation—that 
are formed from these subatomic particles are distinguished by their  atomic number ,  Z , 
the number of protons in the nucleus of an atom of the element. Many elements have a 
number of  isotopes , which are atoms with the same atomic number but different atomic 
masses. These isotopes are distinguished by the  mass number ,  A , which is the total number 
of protons and neutrons in the nucleus. The mass number is also sometimes termed more 
appropriately the  nucleon number . Hydrogen, for instance, has three isotopes. In each 

      1 Atomic structure  

Those fi gures with an asterisk (*) in the caption can be found online as interactive 3D structures. Type the following URL into your 
browser, adding the relevant fi gure number: www.chemtube3d.com/weller/[chapter number]F[fi gure number]. For example, for Figure 4 
in chapter 7, type www.chemtube3d.com/weller/7F04.

Many of the numbered structures can also be found online as interactive 3D structures: visit www.chemtube3d.com/weller/
[chapter number] for all 3D resources organized by chapter.
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4 1 Atomic structure

    BOX 1.1  Nucleosynthesis of the elements   

  The earliest stars resulted from the gravitational condensation of clouds of 
H and He atoms. This gave rise to high temperatures and densities within 
them, and fusion reactions began as nuclei merged together. 

 Energy is released when light nuclei fuse together to give elements of 
higher atomic number. Nuclear reactions are very much more energetic 
than normal chemical reactions because the  strong force  which binds 
protons and neutrons together is much stronger than the electromagnetic 
force that binds electrons to nuclei. Whereas a typical chemical reaction 
might release about 10 3  kJ mol −1 , a nuclear reaction typically releases a 
million times more energy, about 10 9  kJ mol −1 . 

 Elements up to  Z    =   26 were formed inside stars. Such elements are the 
products of the nuclear fusion reactions referred to as ‘nuclear burning’. The 
burning reactions, which should not be confused with chemical combus-
tion, involved H and He nuclei and a complicated fusion cycle catalysed by 
C nuclei. The stars that formed in the earliest stages of the evolution of the 
cosmos lacked C nuclei and used noncatalysed H-burning. Nucleosynthesis 
reactions are rapid at temperatures between 5 and 10 MK (where 1 
MK  =  10 6  K). Here we have another contrast between chemical and nuclear 
reactions, because chemical reactions take place at temperatures a hundred 
thousand times lower. Moderately energetic collisions between species can 
result in chemical change, but only highly vigorous collisions can provide 
the energy required to bring about most nuclear processes. 

 Heavier elements are produced in signifi cant quantities when hydrogen 
burning is complete and the collapse of the star’s core raises the density 
there to 10 8  kg m −3  (about 10 5  times the density of water) and the tempera-
ture to 100 MK. Under these extreme conditions, helium burning becomes 
viable. 

 The high abundance of iron and nickel in the universe is consistent 
with these elements having the most stable of all nuclei. This stability is 
expressed in terms of the  binding energy , which represents the difference 
in energy between the nucleus itself and the same numbers of individual 
protons and neutrons. This binding energy is often presented in terms of 
a difference in mass between the nucleus and its individual protons and 
neutrons because, according to Einstein’s theory of relativity, mass and 
energy are related by  E   =   mc  2 , where  c  is the speed of light. Therefore, 
if the mass of a nucleus differs from the total mass of its components by 
Δ m   =   m  nucleons  −  m  nucleus , then its binding energy is  E  bind   =  (Δ m ) c  2 . The bind-
ing energy of  56 Fe, for example, is the difference in energy between the 

 56 Fe nucleus and 26 protons and 30 neutrons. A positive binding energy 
corresponds to a nucleus that has a lower, more favourable, energy (and 
lower mass) than its constituent nucleons. 

  Figure  B1.1    shows the binding energy per nucleon,  E  bind  / A  (obtained 
by dividing the total binding energy by the number of nucleons), for all 
the elements. Iron and nickel occur at the maximum of the curve, showing 
that their nucleons are bound more strongly than in any other nuclide. 
Harder to see from the graph is an alternation of binding energies as the 
atomic number varies from even to odd, with even- Z  nuclides slightly more 
stable than their odd- Z  neighbours. There is a corresponding alternation in 
cosmic abundances, with nuclides of even atomic number being marginally 
more abundant than those of odd atomic number. This stability of even- Z  
nuclides is attributed to the lowering of energy by the pairing of nucleons 
in the nucleus.   
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   Figure B1.1  Nuclear binding energies. The greater the binding energy, the 
more stable is the nucleus. Note the alternation in stability shown in the 
inset.   

case  Z  = 1, indicating that the nucleus contains one proton. The most abundant isotope 
has  A  = 1, denoted  1 H, its nucleus consisting of a single proton. Far less abundant (only 1 
atom in 6000) is deuterium, with  A  = 2. This mass number indicates that, in addition to 
a proton, the nucleus contains one neutron. The formal designation of deuterium is  2 H, 
but it is commonly denoted D. The third, short-lived, radioactive isotope of hydrogen is 
tritium,  3 H or T. Its nucleus consists of one proton and two neutrons. In certain cases it is 
helpful to display the atomic number of the element as a left suffi x; so the three isotopes 
of hydrogen would then be denoted  11 1

2
1
3H, H, and H.      

    The structures of hydrogenic atoms   

 The organization of the periodic table is a direct consequence of periodic variations in the 
electronic structure of atoms. Initially, we consider hydrogen-like or  hydrogenic atoms , 
which have only one electron and so are free of the complicating effects of electron–elec-
tron repulsions. Hydrogenic atoms include ions such as He +  and C 5+  (found in stellar 
interiors) as well as the hydrogen atom itself. Then we use the concepts these atoms intro-
duce to build up an approximate description of the structures of  many-electron atoms  (or 
 polyelectron atoms ). 
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   Figure 1.1  The abundances of the elements 
in the Earth’s crust and the Sun. Elements 
with odd  Z  are less stable than their 
neighbours with even  Z.    

    BOX 1.2  Nuclear fusion and nuclear fi ssion   

  If two nuclei with mass numbers lower than 56 merge to produce a new 
nucleus with a larger nuclear binding energy, the excess energy is released. 
This process is called  fusion . For example, two neon-20 nuclei may fuse to 
give a calcium-40 nucleus:

  210
20

20
40Ne Ca→    

 The value of the binding energy per nucleon,  E  bind   / A,  for Ne is approxi-
mately 8.0 MeV. Therefore, the total binding energy of the species on the 
left-hand side of the equation is 2 × 20 × 8.0 MeV = 320 MeV. The value of 
 E  bind   / A  for Ca is close to 8.6 MeV and so the total energy of the species on 
the right-hand side is 40 × 8.6 MeV = 344 MeV. The difference in the bind-
ing energies of the products and reactants is therefore 24 MeV. 

 For nuclei with  A  > 56, binding energy can be released when they split 
into lighter products with higher values of  E  bind   / A . This process is called 
fi ssion. For example, uranium-236 can undergo fi ssion into (among many 
other modes) xenon-140 and strontium-93 nuclei:

  92
236

54
140

38
93

0
13U Xe Sr n→ + +    

 The values of  E  bind  / A  for  236 U,  140 Xe, and  93 Sr nuclei are 7.6, 8.4, and 
8.7 MeV, respectively. Therefore, the energy released in this reaction is 
(140 × 8.4) + (93 × 8.7) − (236 × 7.6) MeV  =  191.5 MeV for the fi ssion of 
each  236 U nucleus. 

 Fission can also be induced by bombarding heavy elements with 
neutrons:

  92
235

0
1U n fission products neutrons+ → +    

 The kinetic energy of fi ssion products from  235 U is about 165 MeV and that 
of the neutrons is about 5 MeV, and the γ-rays produced have an energy of 
about 7 MeV. The fi ssion products are themselves radioactive and decay by 
β-, γ-, and X-radiation, releasing about 23 MeV. In a nuclear fi ssion reactor 
the neutrons that are not consumed by fi ssion are captured with the release 
of about 10 MeV. The energy produced is reduced by about 10 MeV which 
escapes from the reactor as radiation, and about 1 MeV which remains as 
undecayed fi ssion products in the spent fuel. Therefore, the total energy 
 produced for one fi ssion event is about 200 MeV, or 32 pJ. It follows that 
about 1 W of reactor heat (where 1 W  =  1 J s −1 ) corresponds to about 
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6 1 Atomic structure

3.1 × 10 10  fi ssion events per second. A nuclear reactor producing 3 GW has 
an electrical output of approximately 1 GW and corresponds to the fi ssion of 
3 kg of  235 U per day. 

 The use of nuclear power is controversial in large part on account of 
the risks associated with the highly radioactive, long-lived, spent fuel. The 
declining stocks of fossil fuels, however, make nuclear power very attrac-
tive as it is estimated that stocks of uranium could last for hundreds of 

years. The cost of uranium ores is currently very low and one small pellet of 
uranium oxide generates as much energy as three barrels of oil or 1 tonne 
of coal. The use of nuclear power would also drastically reduce the rate of 
emission of greenhouse gases. The environmental drawback with nuclear 
power is the storage and disposal of radioactive waste and the public’s con-
tinued nervousness about possible nuclear accidents, including Fukushima 
in 2011, and misuse in pursuit of political ambitions.  

    BOX 1.3  Technetium—the fi rst synthetic element   

  A synthetic element is one that does not occur naturally on Earth but that 
can be artifi cially generated by nuclear reactions. The fi rst synthetic ele-
ment was technetium (Tc,  Z   =  43), named from the Greek word for ‘arti-
fi cial’. Its discovery—or more precisely, its preparation—fi lled a gap in the 
periodic table and its properties matched those predicted by Mendeleev. 
The longest-lived isotope of technetium ( 98 Tc) has a half-life of 4.2 million 
years so any produced when the Earth was formed has long since decayed. 
Technetium is produced in red-giant stars. 

 The most widely used isotope of technetium is  99m Tc, where the ‘m’ indi-
cates a metastable isotope. Technetium-99m emits high-energy γ-rays but 
has a relatively short half-life of 6.01 hours. These properties make the iso-
tope particularly attractive for use  in vivo  as the γ-ray energy is suffi cient for 
it to be detected outside the body and its half-life means that most of it will 

have decayed within 24 hours. Consequently,  99m Tc is widely used in nuclear 
medicine, for example in radiopharmaceuticals for imaging and functional 
studies of the brain, bones, blood, lungs, liver, heart, thyroid gland, and 
kidneys (Section 27.9). Technetium-99m is generated through nuclear fi s-
sion in nuclear power plants but a more useful laboratory source of the 
isotope is a technetium generator, which uses the decay of  99 Mo to  99m Tc. 
The half-life of  99 Mo is 66 hours, which makes it more convenient for trans-
port and storage than  99m Tc itself. Most commercial generators are based 
on  99 Mo in the form of the molybdate ion,   [MoO4

2] −  , adsorbed on Al 2 O 3 . 
The   [ ]99MoO4

2−  ion decays to the pertechnetate ion,  [ ] ,99m TcO4
2−    which is 

less tightly bound to the alumina. Sterile saline solution is washed through 
a column of the immobilized  99 Mo and the  99m Tc solution is collected.  

   Table 1.1  Subatomic particles of relevance to chemistry  

 Particle  Symbol  Mass / m  u *  Mass number  Charge/ e  †   Spin 

 Electron  e −   5.486 × 10 −4   0  − 1  ½     

 Proton  p  1.0073  1  + 1  ½     

 Neutron  n  1.0087  1  0  ½     

 Photon  γ  0  0  0  1 

 Neutrino  ν   c . 0  0  0  ½     

 Positron  e +   5.486 × 10 −4   0  + 1  ½     

 α particle  α    [ He  nucleus]4
2 2+

    4  + 2  0 

 β particle  β  [e −  ejected from nucleus]  0  − 1  ½     

 γ photon  γ  [electromagnetic radiation from nucleus]  0  0  1 

  * Masses are expressed relative to the atomic mass constant,  m  u  = 1.6605 × 10 −27  kg. 
  †  The elementary charge is  e  = 1.602 × 10 −19  C.  

     1.1  Spectroscopic information   
  Key point:  Spectroscopic observations on hydrogen atoms suggest that an electron can occupy only 
certain energy levels and that the emission of discrete frequencies of electromagnetic radiation occurs 
when an electron makes a transition between these levels. 
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7The structures of hydrogenic atoms

 Electromagnetic radiation is emitted when an electric discharge is applied to hydrogen gas. 
When passed through a prism or diffraction grating, this radiation is found to consist of 
a series of components: one in the ultraviolet region, one in the visible region, and several 
in the infrared region of the electromagnetic spectrum ( Fig.  1.2   ; Box 1.4). The nineteenth-
century spectroscopist Johann Rydberg found that all the wavelengths ( λ , lambda) can be 
described by the expression

 

1 1 1

1
2

2
2λ = −⎛

⎝⎜
⎞
⎠⎟

R
n n

 
 (1.1)      

 where  R  is the  Rydberg constant , an empirical constant with the value 1.097 × 10 7  m −1 . 
The  n  are integers, with  n  1  = 1, 2,… and  n  2  =  n  1 +1,  n  1  +2,…. The series with  n  1  = 1 is called 
the  Lyman series  and lies in the ultraviolet. The series with  n  1  = 2 lies in the visible region 
and is called the  Balmer series . The infrared series include the  Paschen series  ( n  1  = 3) and 
the  Brackett series  ( n  1  = 4). 

 The structure of the spectrum is explained if it is supposed that the emission of radia-
tion takes place when an electron makes a transition from a state of energy  −hcR/n2

2     to 
a state of energy  −hcR n/ 1

2     and that the difference, which is equal to   hcR n n( )1 11
2

2
2/ /−   , is 

carried away as a photon of energy  hc / λ . By equating these two energies, and cancelling 
 hc , we obtain eqn 1.1. The equation is often expressed in terms of wavenumber   ��  , where 
  ��    =  1/ λ . The wavenumber gives the number of wavelengths in a given distance. So a wave-
number of 1 cm −1  denotes one complete wavelength in a distance of 1 cm. A related term 
is the frequency,  ν , which is the number of times per second that a wave travels through a 
complete cycle. It is expressed in units of hertz (Hz), where 1 Hz = 1 s −1 . Wavelength and 
frequency for electromagnetic radiation are related by the expression  ν  =  c / λ , with  c , the 
speed of light, = 2.998 × 10 8  m s −1 . 

    BOX 1.4  Sodium street lights   

  The emission of light when atoms are excited is put to good use in lighting 
streets in many parts of the world. The widely used yellow street lamps are 
based on the emission of light from excited sodium atoms. 

 Low pressure sodium (LPS) lamps consist of a glass tube coated with indium 
tin oxide (ITO). The indium tin oxide refl ects infrared and ultraviolet light but 
transmits visible light. Two inner glass tubes hold solid sodium and a small 
amount of neon and argon, the same mixture as found in neon lights. When 

the lamp is turned on the neon and argon emit a red glow which heats the 
sodium metal. Within a few minutes, the sodium starts to vaporize and the elec-
trical discharge excites the atoms and they re-emit the energy as yellow light. 

 One advantage of these lamps over other types of street lighting is that 
they do not lose light output as they age. They do, however, use more 
energy towards the end of their life, which may make them less attractive 
from environmental and economic perspectives.  

 A note on good practice  Although wavelength is usually expressed in nano- or picometers, wavenumbers 
are usually expressed in cm −1 , or reciprocal centimetres.
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   Figure 1.2  The spectrum of atomic 
hydrogen and its analysis into series.   
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8 1 Atomic structure

  The question these observations raise is why the energy of the electron in the atom is 
limited to the values − hcR / n  2  and why  R  has the value observed. An initial attempt to 
explain these features was made by Niels Bohr in 1913 using an early form of quantum 
theory in which he supposed that the electron could exist in only certain circular orbits. 
Although he obtained the correct value of  R , his model was later shown to be untenable 
as it confl icted with the version of quantum theory developed by Erwin Schrödinger and 
Werner Heisenberg in 1926.  

   E X AMPLE 1.1 Predicting the wavelength of lines in the atomic spectrum of hydrogen   

  Predict the wavelengths of the fi rst three lines in the Balmer series. 

  Answer  For the Balmer series,  n  1  = 2 and  n  2  = 3, 4, 5, 6, . . . . If we substitute into equation 1.1 we obtain 

  
1 1

2
1
32 2λ = −⎛

⎝⎜
⎞
⎠⎟

R    for the fi rst line, which gives 1/ λ   = 1513 888 m −1  or  λ  = 661 nm. Using values of  n  2   =   4 

and 5 for the next two lines gives values for  λ  of 486 and 434 nm, respectively. 

  Self-test 1.1  Predict the wavenumber and wavelength of the second line in the Paschen series.  

      1.2  Some principles of quantum mechanics   
  Key points:  Electrons can behave as particles or as waves; solution of the Schrödinger equation gives 
wavefunctions, which describe the location and properties of electrons in atoms. The probability of fi nd-
ing an electron at a given location is proportional to the square of the wavefunction. Wavefunctions 
generally have regions of positive and negative amplitude, and may undergo constructive or destruc-
tive interference with one another. 

 In 1924, Louis de Broglie suggested that because electromagnetic radiation could be con-
sidered to consist of particles called photons yet at the same time exhibit wave-like prop-
erties, such as interference and diffraction, then the same might be true of electrons. This 
dual nature is called  wave–particle duality . An immediate consequence of duality is that 
it is impossible to know the linear momentum (the product of mass and velocity) and the 
location of an electron (or any other particle) simultaneously. This restriction is the con-
tent of Heisenberg’s  uncertainty principle , that the product of the uncertainty in momen-
tum and the uncertainty in position cannot be less than a quantity of the order of Planck’s 
constant (specifi cally, ½ ℏ , where  ℏ  = ℎ  /2 π ). 

 Schrödinger formulated an equation that took account of wave–particle duality and 
accounted for the motion of electrons in atoms. To do so, he introduced the  wavefunction , 
 ψ   (psi), a mathematical function of the position coordinates  x ,  y , and  z  which describes 
the behaviour of an electron. The  Schrödinger equation , of which the wavefunction is a 
solution, for an electron free to move in one dimension is

  
− +�
� �� ��

2 2

22m x
V x x

e

Kinetic energy
contribution Potent

d
d

ψ ψ( ) ( )

iial energy
contribution Total energy� �� �� ���

+ = E xψ ( )
 
 

 (1.2)   

 where  m  e  is the mass of an electron,  V  is the potential energy of the electron, and  E  is its 
total energy. The Schrödinger equation is a second-order differential equation that can 
be solved exactly for a number of simple systems (such as a hydrogen atom) and can be 
solved numerically for many more complex systems (such as many-electron atoms and 
molecules). However, we shall need only qualitative aspects of its solutions. The generali-
zation of eqn 1.2 to three dimensions is straightforward, but we do not need its explicit 
form. 

 One crucial feature of eqn 1.2 and its analogues in three dimensions and the imposi-
tion of certain requirements (‘boundary conditions’) is that physically acceptable solutions 
exist only for certain values of  E . Therefore, the  quantization  of energy, the fact that an 
electron can possess only certain discrete energies in an atom, follows naturally from the 
Schrödinger equation. 
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9The structures of hydrogenic atoms

 A wavefunction contains all the dynamical information possible about the electron, 
including where it is and how fast it is travelling. As Heisenberg’s uncertainty principle 
means it is impossible to know all this information simultaneously, this leads naturally to 
the concept of the probability of fi nding an electron at a given location. Specifi cally, the 
probability of fi nding an electron at a given location is proportional to the square of the 
wavefunction at that point,  ψ    2 . According to this interpretation, there is a high probability 
of fi nding the electron where  ψ   2  is large, and the electron will not be found where  ψ   2  is 
zero ( Fig.  1.3  ). The quantity  ψ   2  is called the  probability density  of the electron. It is a ‘den-
sity’ in the sense that the product of  ψ   2  and the infi nitesimal volume element d τ   = d x d y d z  
(where  τ  is tau) is proportional to the probability of fi nding the electron in that volume. 
The probability is  equal  to  ψ   2 d τ  if the wavefunction is ‘normalized’. A normalized wave-
function is one that is scaled so that the total probability of fi nding the electron somewhere 
is 1. The wavefunction of an electron in an atom is called an  atomic orbital . To help keep 
track of the relative signs of different regions of a wavefunction, in illustrations we label 
regions of opposite sign with dark and light shading corresponding to + and − signs, 
respectively.  

 Like other waves, wavefunctions in general have regions of positive and negative ampli-
tude, or sign. The sign of the wavefunction is of crucial importance when two wavefunc-
tions spread into the same region of space and interact. Then a positive region of one 
wavefunction may add to a positive region of the other wavefunction to give a region of 
enhanced amplitude. This enhancement is called  constructive interference  ( Fig.  1.4  a). It 
means that where the two wavefunctions spread into the same region of space, such as 
occurs when two atoms are close together, there may be a signifi cantly enhanced probabil-
ity of fi nding the electrons in that region. Conversely, a positive region of one wavefunc-
tion may be cancelled by a negative region of the second wavefunction ( Fig.  1.4  b). This 
 destructive interferenc e between wavefunctions reduces the probability that an electron 
will be found in that region. As we shall see, the interference of wavefunctions is of great 
importance in the explanation of chemical bonding.  

      1.3  Atomic orbitals   
 Chemists use hydrogenic atomic orbitals to develop models that are central to the inter-
pretation of inorganic chemistry, and we shall spend some time describing their shapes 
and signifi cance. 

     (a)  Hydrogenic energy levels   

  Key points:  The energy of the bound electron is determined by  n , the principal quantum number; in 
addition,  l  specifi es the magnitude of the orbital angular momentum and  m   l   specifi es the orientation of 
that angular momentum. 

 Each of the wavefunctions obtained by solving the Schrödinger equation for a hydrogenic 
atom is uniquely labelled by a set of three integers called  quantum numbers . These quan-
tum numbers are designated  n ,  l , and  m   l  :  n  is called the  principal quantum number ,  l  is the 
 orbital angular momentum quantum number  (formerly the ‘azimuthal quantum number’), 
and  m   l   is called the  magnetic quantum number . Each quantum number specifi es a physi-
cal property of the electron:  n  specifi es the energy,  l  labels the magnitude of the orbital 
angular momentum, and  m   l   labels the orientation of that angular momentum. The value 
of  n  also indicates the size of the orbital, with larger- n , high-energy orbitals, more diffuse 
than low- n , compact, tightly bound, low-energy orbitals. The value of  l  also indicates the 
angular shape of the orbital, with the number of lobes increasing as  l  increases. The value 
of  m   l   also indicates the orientation of these lobes. 

 The allowed energies are specifi ed by the principal quantum number,  n . For a hydro-
genic atom of atomic number  Z , they are given by

  
E

hcRZ
nn = −

2

2
  
 (1.3)   

 with  n  = 1, 2, 3, . . . and

  
R

m e
h c

= e
4

38 ε0
2

   
(1.4)   
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  Figure 1.3  The Born interpretation of 
the wavefunction is that its square is a 
probability density. There is zero probability 
density at a node. The shaded bars represent 
the values of the wavefunction and the 
probability density, respectively.   
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Wave 1
Wave 2

Wave 1
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  Figure 1.4  Wavefunctions interfere where 
they spread into the same region of space. 
(a) If they have the same sign in a region, 
they interfere constructively and the total 
wavefunction has an enhanced amplitude 
in the region. (b) If the wavefunctions 
have opposite signs, then they interfere 
destructively, and the resulting superposition 
has a reduced amplitude.   
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